Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions.
نویسندگان
چکیده
Holliday junctions form during DNA repair and homologous recombination processes. These processes entail branch migration, whereby the length of two arms of a cruciform increases at the expense of the two others. Branch migration is carried out in prokaryotic cells by the RuvAB motor complex. We study RuvAB-catalyzed branch migration by following the motion of a small paramagnetic bead tethered to a surface by two opposing arms of a single cruciform. The bead, pulled under the action of magnetic tweezers, exerts tension on the cruciform, which in turn transmits the force to a single RuvAB complex bound at the crossover point. This setup provides a unique means of measuring several kinetic parameters of interest such as the translocation rate, the processivity, and the force on the substrate against which the RuvAB complex cannot effect translocation. RuvAB-catalyzed branch migration proceeds with a small, discrete number of rates, supporting the view that the monomers comprising the RuvB hexameric rings are not functionally homogeneous and that dimers or trimers constitute the active subunits. The most frequently encountered rate, 98 +/- 3 bp/sec, is approximately five times faster than previously estimated. The apparent processivity of branch migration between pauses of inactivity is approximately 7,000 bp. Branch migration persists against opposing forces up to 23 pN.
منابع مشابه
RuvAB-directed branch migration of individual Holliday junctions is impeded by sequence heterology.
The Holliday junction, the key intermediate of recombination, is generated by strand exchange resulting in a covalent connection between two recombining DNA molecules. Translocation of a Holliday junction along DNA, or branch migration, progressively exchanges one DNA strand for another and determines the amount of information that is transferred between two recombining partners. In Escherichia...
متن کاملRuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration.
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, ...
متن کاملBranch migration during homologous recombination: assembly of a RuvAB-holliday junction complex in vitro
The RuvA and RuvB proteins of E. coli promote the branch migration or movement of Holliday junctions during genetic recombination and DNA repair. Using small synthetic Holliday junctions in which the crossover point is confined near one end of the DNA molecule, we show that RuvAB-mediated branch migration occurs with a defined polarity. The assembly of RuvA and RuvB on the Holliday junction has...
متن کاملThe role of RuvA octamerization for RuvAB function in vitro and in vivo.
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences be...
متن کاملRuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer
The Escherichia coli RuvA and RuvB proteins promote the branch migration of Holliday junctions during the late stages of homologous recombination and DNA repair (reviewed in [1]). Biochemical and structural studies of the RuvAB-Holliday junction complex have shown that RuvA binds directly to the Holliday junction [2] [3] [4] [5] [6] and acts as a specificity factor that promotes the targeting o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 32 شماره
صفحات -
تاریخ انتشار 2004